The D.A.I. model to better understand different mindests and cultural values: why social responsibility means higher prices?


Few weeks ago, from a new Twitter follower, I’ve received a direct message with the following question: “Do you spend more money with a brand that you think is socially responsible?”. I felt immediately that it could be either a marketing research or a way to create awareness on something, nothing bad on it whatever it is.

Anyhow, the aim of a question is to gather an information. So which is the information that the question above wants to address? Suddenly came into my mind a principle from information theory: information is an interpretation of data based on assumptions (see figure). Usually assumption are due to culture, mindset and context in general. Think, as an example, how the same gesture of moving the head up and down (data) means yes for Europeans and Westerns but for Indians means exactly the opposite.

information_assumption

So, why not applying such a principle from information theory also for every day life in order to better understand ourselves as well as others? Let’s analyze deeper the question “Do you spend more money with a brand that you think is socially responsible?”

First of all, the question is a close one since the answer must be yes or not. When I’ve realized that I felt myself uncomfortable… why? I thought and I realized that is due to the value of “social responsibility” that in the question is forced to be against “price” (money).

Acknowledge that, I inferred unconsciously that if the answer of the question would have been YES it means that social responsibility is priceless thus more important that money. Vice versa, if the answer would have been NO.

…however, why inferring such considerations? which is the assumption behind? That was my doubt and my hypothesis was that the assumption behind the tricky question “Do you spend more money with a brand that you think is socially responsible?” is: beeing social responsible costs!

…wow, eureka! So, why not creating such conditions so that pursuing social responsibility implies intrinsically cheaper products?

That was my question that I’ve delivered to the owner of the research…and, as an incredible surprise, I’ve receive the following answer: “The impression is socially responsible = higher product cost to the consumer.”

Bingo! The assumption that I’ve inferred is right. There is a kind of cultural impression, suggestion and mindset that unconsciously let us to think (me included) that if you want social responsible products there are no other ways: you have to pay more! Why?

Paradoxically, since people behave according to incentives, if socially responsibility implies intrinsically cheaper prices instead, a virtuous circle will be established!

How to create a context where the assumption “socially responsible = higher product” is replaced with “socially responsible = cheaper product”?

…I don’t know, any idea?

Meanwhile, why not applying the DAI (Data, Assumption, Information) model whenever we inferred quick answers?

Behind each information there is an unknown world of undisclosed assumptions.

Feelink – Feel & Think approach for doing life!

My Issue with BigData Sentiment Bubble: Sorry, Which Is the Variance of the Noise? (NON Verbal Communication)


Why sentiment analysis is so hard? How to interpret the word “Crush” in a tweet? Crush as in “being in love” or Crush as in “I will crush you”? According to Albert Mehrabian communication model and statistics, I would say that on average a tweet for a sentimenter has an accuracy of 7%. No such a big deal, isn’t it?

Let’s think about it by considering, as an example, the case of the sentiment analysis described in My issues with Big Data: Sentiment: crush as in “being in love” (positive) or crush as in “I will crush you” (negative)?

What is a sentimenter? As a process, is a tool that from an input (tweets) produce an outupt like “the sentiment is positive” or “the sentiment is negative“. Many sentimenters are even supposed to estimate how much the mood is positive or negative: cool!

Paraverbal and non-verbal communication

Anyhow, according to Albert Mehrabian the information transmitted in a communication process is 7% verbal, 38% paraverbal (tone of the voice) and the remaining 55% is non-verbal communication (facial expressions, gestures, posture,..).

In a Tweet, as well in a SMS or e-mail, neither paraverbal nor non-verbal communication are transmitted. Therefore, from a single tweet is possible to extract only the 7% of the information available: the text (verbal communication).

So, what about the paraverbal and non verbal communication? During a real life conversation, they play a key role since they count for 93% of all the message. Moreover, since paraverbal and non verbal messages are strictly connected with emotions, they are exactly what we need: sentiments!

Emotions are also transmitted and expressed though words such as “crush” in the example mentioned. However, within a communication process, not always the verbal and non-verbal are consistent. That’s the case when we talk with a friend, he\she saiys that everything is ok while we perceive, more or less consciously, something different from his\her tone or expressions. Thus we might ask: are you really sure that everything is ok? As a golden role, also for every day life, I would recommend to use non-verlbal signals as an opportunity to make questions rather than inferring mislead answers (see also: A good picture for Acceptance: feel the divergences & think how to deal with).

For these reason, the non-verbal messages are a kind of noise that interferes with verbal communication. In a tweet, it is a noise that interferes with the text. Such a noise can be as much disturbing as much the transmitter and the receiver are sensitive to the non-verbal communication. It might be so much disturbing to change completely the meaning of the message received.

Statistic and Information Theory

From a statistic point of view the noise might be significantly reduced by collecting more samples. In Twitter, a tweet is one sample and each tweet have 7% of available information (text) and 93% of noise (non verbal communication) that is the unknown information.

From a prediction\estimation point of view no noise means no errors.

Thus, thanks to BigData, if the sentimenter analyzes all the tweets theoretically it’s possible to reduce the noise to zero and thus having no prediction error about sentiments…...WRONG!!!

Even if the sentimenter is able to provide a result by analyzing all the BigData tweets (see Statistical Truisms in the Age of Big Data Features):

the final error in our predictive models is likely to be irreducible beyond a certain threshold: this is the intrinsic sample variance“.

The variance is an estimation of how much samples are different each others. In the case of a communication process, that means how much emotions are changeable through time. Just for fun, next time, try to talk to a friend by changing randomly your mood happy, sad, angry,..and see what happen with him\her (just in case, before fighting tell him\her that is part of an experiment that you’ve read in this post).

In Twitter, the variance of the samples is an estimation about how much differently emotions are impacting the use of certain words in a tweet, from person to person at a specific time. Or, similarly, by considering one person, how much emotions are impacting the use of words differently through time.

Like in a funnel (see picture), the sentimenter can eliminate the noise and thus reduce the size of the tweet bubbles (the higher the bubble the higher the noise) till a fixed limit that depends on the quality of the sample: its variance.

Sentimenter_Twitter_Funnel

So, I have a question for bigdata sentimenters: which is the sample variance of tweets due to non-verbal communication? Acknowledge the sample variance, the error of prediction of the best sentimenter ever is also given:

error of prediction (size of the bubble sentiment) = sample variance of tweets…

…with the assumption that both samples and algorithm used by the sentimenter are not slanted\biased. If this is not the case, the sentiment bigdata bubble might be even larger and the prediction less reliable. Anyhow, that is another story, another issue for BigData sentimenters (coming soon, here in this blog. Stay tuned!).

Feelink – Feel & Think approach for doing life!

Tripadvisor: a case study to think why bigdata variety matters


tripaadvisor

The recent scandals about fake reviews has put the reliability of TripAdvisor under discussion (see The Guardian).

Such a bad quality of service is not useful for consumers, entrpeneurs as well as in the long run for the reputation of TripAdvisor. So, where is the problem?

Clearly it’s a question of reliability of the sources of information and specifically for TripAdvisor is a question of assessing the reliability of the user that post a new review. Nice and easy…like discovering the hot water. However, thinking also at the practice of the so-called Negative SEO, that is not only an issue of web sites like TripAdvisor but also for all the companies that have to promote theirs brands in the social networks (who think doesn’t need it, raise up the hand).

In order to fix the issue, Tripadvisor developed the service Report Blackmail that tracks and eventually bans the users that are using Negative SEO tactics. For example, 100 user managed by a restaurateur that are reporting cases of colitis and runs in the reviews of the competitor near the corner. Such a solution try to catch fake users when they’ve already done the “attack” as well as, if not properly working, it might ban by mistake honest users. It sound reactive rather proactive, isn’t it?

So, are there other approaches that can fix the problem of malicious reviews proactively? An idea could be use new IT bigdata technologies and re-think the business model. How? (see also MIT Sloan Management Review: technology as a catalyst for change).

An approach could be associating the Tripadvisor user with a unique ID, for example a TripAdvisor idetity card, while to restaurateurs and hotel managers have an ID card reader (RFID, infrared,etc.). Thus, once the consumer eat the meal and goes to pay the restaurateur track the consumer ID that univocally identify the user, plus time and position. Finally, the user have just to fill the form for his\her review that now can be fully validated. Potentially, once the users sign in the TripAdvisor website, a list of pending reviews not already filled might be also provided in order to facilitate the process and thus creating the so-called “customer experience”. Moreover, by tracking precisely the date, it is also possible to provide evaluations that are more meaningful for the customer by giving less importance to aged reviews.

With the technology currently available actually even a smart phone could be a card reader since it might equipped with a RFID or a magnetic stripe reader and, by developing a specific app, the restaurateur could easily and quickly transmit a transaction with the TripAdvisor ID of the customer.

tipadvisor_new_business_model

Apart from the solution proposed, that is an example that stresses the importance, when defining a bigdata strategy, to identify first the information that is really meaningful (user, time, position) as well as having a Variety of sources in order to validate the reliability of the data. In the case of Tripadvisor is crucial to correlate the data coming from the restaurateurs with the reviews of the couple customer\user (together!!!).

Thinking about the definition of BigData by Gartner:

Bigdata is high-volume, -velocity and -variety information assets that demand
cost-effective, innovative forms of information processing for enhanced insight and decision making

So, Variety is one of the “Vs (Volume, Velocity and Variety) and the Volume of data is only what is up to the sea level of the iceberg called BigData.

Do you think that variety matter? I think yes, it matters!

If you think so as well and you have the opportunity to visit Italy I would you recommend (personal advice) to enjoy meals in restaurants where are shown logos such as the following and relying on the word of mouth, an evergreen.

Recensioni

They are not implementing Variety like TripAdvisor as well but reviews are made by professionals and they do not have social media and WEB2.0 visibility risks. Of course, I would recommend to find other sources (use variety!).

Have a nice journey and enjoy the meal!

Feelink – Feel & Think approach for doing life!